RAID + PrimoCache =-?
I have been looking at different approaches for speeding up RAID access. My goal is to establish a RAID array with a SSD perfomance cache and then have a seperate drive(s) for backups. I used Intel RST for RAID 5 and RAID 0.
I intentionally selected some low performing "data" drives to ensure the testing showed obvious results. Here is some detail about the drives I used.

Prior to my testing I wanted to establish baseline performance. I used the ADATA drive as my OS boot drive. I made the 3 spinners the "data" drives. I setup the SSDs as a striped cache.

Baseline speed on the RAID5:

OMG RAID5 write sucks - especially on a few slow drives! Yes, you know it. That is why we are here.

SSD Cache RAID0 - baseline speed:

I used the trial version 3.0.9 as I have not yet purchased the product. Just evaluating it right now...
Setting up PrimoCache has a few options. Here are the settings that gave me the best test results:

First, select volume to cache:

Configure the RAM drive AKA level 1:

Configure the SSD cache AKA level :

I want to make sure the cached files are available for read & write so I uncheck the individual Read/Write Cache Space.

Setting Enable Defer-Write is important to get the full benefit of caching speed improvements. Check Prefetch last cache if you prefer to carry over cache between reboots.

Intelligent mode worked best in my testing.

There are nice stats on the main page including cache hit info.

Ok, lets see the scores now:

Ok, those are great numbers considering the starting point, but what about real world. Next test is file copy. I select 24 GB of files from my ADATA drive to copy to the cached RAID5. This size ensures I exceed the RAM disk size.

Initial copy is 2GB/s and then as the RAM drive is filled, the speed drops to the striped SSD speed. Writes to spindles are defered . 60-200 times faster. Nice!
What about reading the cached files?

Same story here. I can do this over & over and hit the cache at great speeds while the spinning disks get updated at their modest rate. My perfomance experience is greatly improved.

48 GB copy to RAID5? No problem.

100 GB? Yes it can!

So all this seems pretty fantastic, right? What's the catch, you might ask? Setting Enable Defer-Write brings considerable risk to data integrity. All these deferred writes have to be done at some point. That some point will be when you shut down / reboot if the RAID 5 drives are so slow that they cannot sync up. At the rates on these drives I tested with, I saw it take 30-45 minutes to sync up a large copies like I did with the testing. So this is not a realistic solution for me with these drives.
The data risk comes if you have an unstable overclock, faulty drivers, misbehaving applications or anything else that will give you a BSOD or cause your system to hang/not shutdown in an orderly fashion. This causes corruption and data loss. (During testing on ReFS, I powered off during the write at shutdown. The entire volume was corrupted and the filesystem was made labelled "RAW." - Yikes!) The required shutdown/reboot time must be well understood to ensure UPS power will give sufficient time to flush all cache to disk given a power outage.
Obviously a cache sync is required prior to performing any backup. Need to see if there is a commandline option for that to ease scripting.
Verdict? Jury is still out for me. I want to use this solution, but I plan to do more testing with my faster drives to see if this can be made a workable solution with a shutdown that doesn't take too long. If I cannot easily automate sync for backup scripting that would also be a concern.

image0.wmf

image5.wmf

image6.wmf

image7.wmf

image8.wmf

image9.wmf

image10.wmf

image11.wmf

image12.wmf

image13.wmf

image14.wmf

image1.wmf

image15.wmf

image16.wmf

image17.wmf

image18.wmf

image19.wmf

image20.wmf

image21.wmf

image22.wmf

image23.wmf

image24.wmf

image2.wmf

image25.wmf

image26.wmf

image27.wmf

image28.wmf

image29.wmf

image30.wmf

image31.wmf

image32.wmf

image3.wmf

image4.wmf

